How Zions Bank Is Conquering Big Data for Marketing Campaigns

Print
Email
Reprints
Comment (1)
Twitter
LinkedIn
Facebook
Google+

A large data analytics project is like painting a bridge, says Deva Annamalai, vice president and product and marketing technology strategist at Zions Bank in Salt Lake City.

"You start from one end and when you get to the other end, you've got to start at the beginning again," he says.

Annamalai headsa group Zions created about six months ago called Marketing Insights. Over the next several months, the team's goal is to identify business use cases and "data recipes" that will help the marketing department come up with more advanced customer segmentation capabilities, provide next-best offer products based on predictive analytics, and optimize marketing campaign execution.

One thing that makes this analytics team and its mission different from others is the source of much of its data the fraud analytics team headed by information security manager Michael Fowkes.

"Our fraud analytics group started a Big Data setup two years ago," Annamalai says. The group, which includes two data scientists, started collecting information primarily to protect customers from fraud. It reached a point where it had the bandwidth to offer the data analytics to other departments, starting with marketing.

"They were able to say, in the past you probably didn't have access to some of our bank information the way the systems are siloed, but now we're collecting all this information and we can get this data to you, if you ask the right questions," Annamalai says. For instance, the marketing group used to have limited access to branch transaction data. "That quickly opened up new ground for us, because from a marketing perspective getting the right data is always a challenge."

In one example, the marketing department might want to launch a commercial business card. To do so, it needs to find out which business customers already have a card. "If they do have a card, we want to know if they're making big payments to American Express or some other card provider," he says. This type of query, which might sound simple, is actually hard, Annamalai says, because the marketing department doesn't normally have access to the different sources of account and transaction data needed.

"We would scramble between multiple teams to try to come up with the data for a campaign," Annamalai says.

What's in it for the fraud analytics team to share their enterprise data warehouse?

It comes down to business justification for the project, Annamalai says. "They've reached a point where in order to expand to more systems within the bank, they need to be able to prove a business value beyond fraud modeling. Fraud modeling is a use case, but the next biggest use case is marketing insights, mining information about customer acquisition plans and attrition plans."

The fraud analytics group uses a Hadoop cluster-based data warehouse that houses about five petabytes worth of information. It receives feeds from 140 data sources, including core banking, online banking and loan servicing data. Some are real time; others are on a nightly, weekly or monthly basis. Some information is available in a few minutes, more complicated queries might take a few hours.

The group uses business tools to monitor activity across channels; for instance, noting if a customer makes a branch transaction at the same time as a mobile banking transaction.

The marketing insights group recently tried to build a business case for mobile remote deposit capture, using the fraud database. "We had to ask the question, how many mobile banking customers still walk into a branch to deposit a check?" Annamalai says. "In the old model, it would have been impossible to ask the question. With the amount of data these guys are tracking, they can tell which mobile banking customers have been active in the last 30 days, what checks have been deposited in their accounts, and the value of those checks."

Another marketing use for the system is cross-sales. The bank could query the data warehouse to find all customers who paid $1,000 or more on a loan not written on Zions. "That's something we could use to promote home equity products to them," Annamalai says. This could be set up as an automated, repeating query.

Annamalai is currently creating a "lifestyle score model" that would show how digital a customer is.

"The idea is, I want to be able to attract more customers who have a propensity to use the digital products I have," he says. "Are they using my online banking, mobile banking, bill pay? Are they signed up for e-statements? Are they signed up for purchase alerts?"

Once he completes and back-tests the model to see how well it works, he'll have a picture of customers that have a high propensity to use digital products that can be applied to the broader customer base.

JOIN THE DISCUSSION

(1) Comment

SEE MORE IN

'The Law Penalizes the Consumers It Set Out to Protect': Comments of the Week

American Banker readers share their views on the most pressing banking topics of the week. As excerpted from the Comments sections of AmericanBanker.com articles.

(Image: Fotolia)

Comments (1)
Am I the only one who thinks this is just creepy?

"In one example, the marketing department might want to launch a commercial business card. To do so, it needs to find out which business customers already have a card. "If they do have a card, we want to know if they're making big payments to American Express or some other card provider," he says. This type of query, which might sound simple, is actually hard, Annamalai says, because the marketing department doesn't normally have access to the different sources of account and transaction data needed."
Posted by masaccio | Monday, July 15 2013 at 3:13PM ET
Add Your Comments:
Not Registered?
You must be registered to post a comment. Click here to register.
Already registered? Log in here
Please note you must now log in with your email address and password.

The Most Influential Women in Payments

What does it take to lead in the still-mostly-male world of payments? This year's 20 Most Influential Women in Payments share stories about how they got to the top, their vision for the future of payments (hint: it's mainly mobile), and advice to other women working their way up the ladder.
DAILY ENEWSLETTER UPDATE

A Newsletter featuring Bank Technology News' top stories plus special reports and data

TWITTER
FACEBOOK
LINKEDIN
Already a subscriber? Log in here
Please note you must now log in with your email address and password.